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A recent interpretation of the photoelectron spectrum of trivinylborane has 

raised the question of the extent of boron-carbon n-conjugation in vinylboranes. 1 

We present some results of our ab initio study of two conformations of vinyl- 

borane and show that such conjugation is significant; no previous ab initio 

studies on this system are known to us. 

Using the minimal STO-3G basis set developed by Pople, 
2 
we have computed SCF 

molecular orbital wave functions for vinylborane in its planar conformation (I) 

and a twisted conformation (II) in which the planes of the vinyl and BH2 groups 

are mutually perpendicular. The bond lengths and angles in the vinyl group are 

given the experimental values. 3 Bond angles about borane were assumed to be 120° 

and the BH bond length was set at the value found experimentally for the terminal 

BH bonds in diborane. 
4 

The orbital exponents used for the atoms in the vinyl and 

hH2 groups are those found optimal for ethylene5 and for borane, 6 respectively. 

The B-C bond length was set at 1.52 i, the value found experimentally in phenyl- 

dichloroborane.' The total energies found are: I, -102.0361 au: II, -102.0222 

au. 

In the twisted vinylborane there can be no interactions involving the TI- 

bond of the vinyl group with the boron p, atomic orbital. Only hyperconjugation 

effects are possible in II, and are expected to be relatively small. Correspond- 

ingly, the rotation barrier about the C-B bond, as given by the energy difference 

between I and II, should provide a fair measure of C-B n-bonding. Although the 

present STO-3G calculations are with a minimal basis set, such calculations are 

nonempirical and generally reproduce rotational barriers quite well. 8 The com- 

puted energy difference is 8.8 Kcal mol -' (37 Kj mOl_’ 1, favoring the planar 

structure, and indicates a significant a-interaction. This value may be compared 
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to experimental values of about 5 Kcal mol -1 (21 Kj mol-1) in 1,3-butadiene' and 

about 23 Kcal mol -1 (96 Kj mol-') in ally1 cation.1' The computed C-B r-inter- 

action is also affirmed by the lowering of the n-orbital energies of I, -9.86 eV, 

and II, -8.86 eV; that is, the mixing of the boron p, atomic orbital into the C-C 

a-MO results in an energy lowering of 1.00 eV. 

The Mulliken population analyses 11 show a B-C a-overlap population of 0.100 

and a C-C n-population of 0.360 in I. In II, the C-C n-population is somewhat 

larger, 0.394, whereas the C-B populations in the MO's of n-symmetry are small, 

0.026. The atomic and overlap populations are summarized in Table I. 

Although convenient and frequently useful , Mulliken population analyses do 

have important limitations that generally arise from the way in which electron 

densities over broad regions of space are assigned to specific atoms and orbitals. 

As a result, Mulliken population analyses are basis-set dependent. An alternative 

representation is a direct plot of an appropriate electron density function. Such 

a plot is shown in Figure 1 of the n-electron density in I in a plane 0.5 au 

(0.265 A) above the molecular plane. The electron density is given as the z- 

coordinate for every point in the xy plane. The peaks show the.concentration of 

a-electron density near each nucleus but the saddle points show the relative 

extent of electronic overlap or covalent bonding. The plot shows that B-C r- 

bonding is significant but smaller than C-C n-bonding. The plot also shows, as 

do the Mulliken populations in Table I, that the electron density transferred from 

the C-C n-bond to boron comes principally from the 8-carbon; the central atom has 

the largest r-density, a result expected from perturbation arguments and apparent 

in even simple H&kel treatments of allylic cation systems. It should be noted 

that the choice of a plane for the plot in Figure 1 is arbitrary. The molecular 

plane, of course, is the nodal plane of the r-system but any plane parallel to and 

above or below the nodal plane would show essentially the same features. Similar 

plots with other systems have shown that the choice of a plane 0.5 au above the 

molecular plane gives hills and valleys of convenient proportions. 
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Fig, 1. Electron density function for a plane 0.5 au above the molecular plane 

of vinylborane, CH2=CHBH2. The C-B bond is indicated as of dashed Line. 

TABLE I. Atomic and Overlap Populations fox Planar and Twisted Vinylbosane, 

Atomic Populations Overlap Populations 

f, PIanar 

77 

B Cl cz B-C1 cl-c2 

0.228 0.999 0.872 O.100 0.360 

Total 4.761 6.190 6.102 0.898 2.168 

II, Twisted 

1T 0.033 0.970 1.021 0.026 0.394 

Total 4.726 6.178 6.158 0.854 1.3.9s 
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